Nano Indenter XP System

Yen Chung Kun 2005.06.15

Nano Indenter Introduction

Theorem

Conventional Microhardness

Conventional Microhardness

- Diagonal, D, is measured optically after removal of load
- Vickers: D = 7h
- Knoop: D = 30.5h

Berkovich Geometry Diamond Tip

- Three-sided geometry gives a sharp tip
- Residual indentation shape is material dependent

Fused Silica

Nickel

Aluminum alloy

What is Depth-Sensing Indentation

- Apply a specific, quasi-static or dynamic load-time history on a diamond indenter
- Measure the displacement-time response
- Ues the data to extract certain mechanical properties based on analytical models

Hardness & Young's Modulus

- Hardness is the mean pressure the material will support
- Young's modulus is calculated from the composite response modulus, E_r
- Though not shown explicitly here, both H and E require load, depth and stiffness for calculations

$$H = \frac{P}{A}$$

$$E_r = \frac{S\sqrt{\pi}}{2\beta\sqrt{A}}$$

Load-Displacement Behavior

• Aluminum, typical of soft metallic behavior, shows very little displacement recovery upon unloading

 Fused silica, typical of ceramic behavior, shows large elastic recovery upon unloading

Elastic/Plastic Indentations

• For an ideally plastic indentation, $h_c \approx h_t$

• For an elastic/plastic indentation, $h_c < h_t$

Stiffness From Unloading

Contact Depth and Stiffness

- The unloading curve follows a power law
- Contact stiffness is the slope of the unloading curve
- Contact depth is determined from the displacement, load, and contact stiffness

$$P = \alpha h_t^m$$

$$S = \frac{dP}{dh_t}\bigg|_{P_{\text{max}}}$$

$$h_c = h_t - \varepsilon \frac{P_{\text{max}}}{S}$$

Contact Area (the tip function)

• The "tip function" for the ideal Berkovich tip

$$A = 24.56h_c^2$$

- Experimental tip function
 - Arbitrary form Coefficients determined experimentally

$$A = 24.56h_c^2 + \sum_{i=0}^{7} C_i h_c^{\frac{1}{2^i}}$$

Dynamics Mode

Problems with Time-Dependence

- "Conventional" stiffness determination unreasonable
- Large amounts of time-dependent deformation
- Large timedependent recovery

Polymer thin film

CSM

CSM

- Patented Method for the Continuous
 Determination of the Elastic Stiffness of
 Contact Between Two Bodies
- "Frquency Specific, Depth-Sensing Indentation"

Benefits of CSM

- Properties vs. depth avoiding substrate effect
- Controllable strain rate
- Surface contact determination
- Viscoelastic materials and properties

CSM - Force Oscillation

CSM - Linear Elastic Materials

Elastic

Viscoelastic

CSM Calculations

• The phase and amplitude of the material's response to the force oscillations are characteristic of the stiffness of the contact as well as the damping of the material.

$$S = \frac{F}{h} \cos \phi$$

Thin Film Testing without CSM

Unloading data

- Unloads at 0.1, 0.5 and 1.0 times thickness
- Values imply film hardness varies linearly with depth

Al film on glass

Thin Film Testing with CSM

CSM data

 Continuous data with thickness (i.e., depth) shows true character of film

Al film on glass

Berkovich Diamond Tips

AccuTipTM Berkovich Diamond Tips

• The sharper the tip, the shallower an indent can be made to give reliable hardness values

AccuTipTM Berkovich Diamond Tips

Old diamond tips

- Face angles fairly consistent, but not known with any precision
- Tip radius typically $\sim 100 150$ nm
- New AccuTipTM Berkovich diamond tips
 - Face angles known to $\pm 0.025^{\circ}$
 - Tip radius \leq 50 nm (typically \sim 40 nm)

Nickel

Old Berkovich Diamond Tip

- Two different DLC films, both 20 nm thick
- No significant difference between them measured
- Plasticity does not begin at a shallow enough indent depth to see a significant effect of the film in the measurement

Tip Sharpness

 A sharp tip is required for making hardness measurements at very shallow indentation depths

Systems

Nano Indenter® XP

Nano Indenter® XP Specifications

Displacement resolution	<0.01 nm
Total indenter travel	2 mm
Max indentation depth	>500 µ m
Loading Capability	
• Maximum load	500 mN (50.8 gm)
 Max load - high load option 	10 N (1 kg)
• Load resolution	50 nN (5.1 μgm)
 Load resolution – high load 	50 nN (5.1 μgm)
• Contact force	<1.0 µ N
 Load frame stiffness 	$\approx 1 \times 10^7 \text{ N/m}$

Hardware Options

- DCM
- CSM
- LFM
- Tips
- AFM
- Nano Vision
- 100x Objective
- 150x Objective

Software Options

- Explorer software for Testworks v. 4
- 3D software
- Virtual Indenter : FEM modeling

Motion System Options

 High stiffness, rotary encoders, low profile, large footprint (crossed roller slide w/ rolled lead screw & anti-backlash nut)

• Travel:

- XP : 90 mm x 100 mm

- XPW: 225 mm x 300 mm

- SA2: 35 mm x 30 mm

• Resolustion (X-Y Direction)

- **XP** : 0.5 mm

- XPW: 0.5 mm

- SA2: 0.5 mm

Accuracy: 1mm

More on the Nano Positioning Stage

- Integrated nano positioning stage, "Piggyback" on standard XP motion system
- Two samples can be mounted, both accessible
 by XP
- Travel: 100 mm x 100 mm
- Resolution: 2 nm
- Accuracy: 0.01 %

Nano Vision

Nano Vision

Nanomechanical Microscopy Option

Indent - scan Indentation

Load, Displacement, Stiffness....

All the traditional results from regular indentation.

Indent – scan Image

Interactive mode Targeting

Step 1:

Scan

Step 2: Select new area of scan

Step 3:

scan

Interactive mode Indenting

Step 4: Position indent location

Step 5: Indentation

Step 6: Scan the indent

TestWorks Software

Test Works' Place in Our Instrument

Acknowledgement

- Center for Nanoscience & Nanotechnology
- NEMS&MEMS Lab.

Thank you!!