Electronic and structural properties of quaternary compounds

唐毓慧 (Yu-Hui Tang) 國 立中山大學物理所

指導教授 : 蔡民雄教授

民國九十四年六月一日

Contents

• Motivation

- \triangle Calculation methods
- Electronic properties of $\rm{Ba}_{1-x}\rm{Sr}_{x}\rm{TiO}_{3}$ and $\rm{Pb}_{1-x}\rm{Sr}_{x}\rm{TiO}_{3}$ alloys
- \triangleq Electronic and magnetic properties of $La_{1-x}Sr_xMnO_3$ and $La_{1-x}Ca_xMnO_3$
- **Electronic structures of wide-band-gap (SiC)**_{1-x}(AlN)_x semiconductors
- \Box Conclusion

Motivation

Binary compounds :

Charge transfer and bonding are very simple.

Q Ternary compounds :

Charge transfer and bonding are more complicated. But, their electronic structures are derivable from those of the two constituent binary compounds with some modification.

Quaternary compounds :

The comple and subtle charge transfer may give rise to an electronic structure different from those predicted directly from constituent binary or ternary compounds.

Use of the first-principles calculation method to understand electronic properties of three kinds of quaternary compounds with complicated charge transfer.

Calculation methods

- First-principles pseudofunction (PSF) calculation method is used to obtain electronic structures.
- First-principles molecular-dynamics (MD) calculation method is used to efficiently obtain the structural parameters.
- These first-principles calculation methods are implemented with the density functional theory (DFT), the local-density approximation (LDA) for paramagnetic calculation, and the local-spin-density approximation (LSDA) for spin-polarized calculation.

Electronic properties of $\rm Ba_{1-x}Sr_{x}$ $TiO_3(BSTO)$ and $\mathrm{Pb}_{\text{1-x}}\mathrm{Sr}_{\text{x}}$ TiO 3 (PSTO) alloys

- The experimental lattice constant, (*^a*,*b*,*^c*), of the **perovskite** structure are obtained by the x-ray diffraction (XRD).
- The (2a,2b,c) unit cell and atomic positions of the **undistorted perovskite** structure are used for all cases.

The band structures for $\rm{Ba}_{1-x}\rm{Sr}_{x}\rm{TiO}_{3}$

 $\boldsymbol{\mathsf{x}}$

 Γ

M

 $\mathbf R$

[1] K. Van Benthem et al., J. Appl. Phys. 90, 6156(2001). [2] S. H. Wem ple., Phys. Rev. B2, 2679(1970).

\perp PDOS's and O *K*-edge XANES spectra of Ba_{1-x}Sr_xTiO₃

TDOS's for $\operatorname{Ba}_{1\text{-x}}\!\operatorname{Sr}_{\text{x}}\!\operatorname{TiO}_3$

E : O-*p*

$$
F : O-p
$$
 and Ti-d

[1] P. Pertosa et al., Phys. Rev. **B18**, 5177 (1978).

[2] Shigemi Kohiki et al., Phys. Rev. **B64**, 7964 (2000).

The core-level x-ray photoemission spectroscopy (XPS) spectrum for $SrTiO₃$.

The band structures for $Pb_{1-x}Sr_{x}TiO_{3}$

More significant variation of band gaps for PSTO than for BSTO.

 \triangleq PDOS's and O *K*-edge XANES spectra for Pb_{1-x}Sr_xTiO₃

TDOS's for $\mathrm{Pb}_{1\text{-x}}\mathrm{Sr}_{\text{x}}\mathrm{TiO}_{3}$

 $E: O-p$ F: $O-p$ and Ti-*d*

G : Pb-*s* \rightarrow enlarge the valance bandwidth

Effective charges for $\text{Ba}_{1\text{-x}}\text{Sr}_{\text{x}}\text{TiO}_3$ and $\text{Pb}_{1\text{-x}}\text{Sr}_{\text{x}}\text{TiO}_3$

Electronegativity

Ba = 0.89, **Sr** = 0.95, **Ti** = 1.54, **Pb** = 2.33, and **O** = 3.44

Electronic configuration

Ba : [Xe]6s2, **Sr** : [Ar]5s2, **Pb** : [Xe]6s2**6p2**

Extra two 6*p* **valance electrons of Pb** \rightarrow **More repulsive; tends to lose electrons. Larger electronegativity of Pb** \rightarrow **Tends to gain electrons from Sr and Ti**

Electronic and magnetic properties of $\rm La_{1-x}Sr_x$ MnO_{3} and $\mathrm{La}_{1\text{-x}}\mathrm{Ca}_{\mathrm{x}}$ MnO_{3}

Magnetic states for $\rm La_{1-x} Ca_x MnO_3$ and $\rm La_{1-x} Sr_x MnO_3$

\perp Band structures and PDOS's of LaMnO₃

 \Box The calculated band gap for LaMnO₃ is about 0.7eV, which is formed between Mn majority-spin *^e*^g and minority-spin t_{2g} sub-bands.

‡ PDOS's of ferromagnetic cases

↓ PDOS's of antiferromagnetic cases

+ PDOS's of antiferromagnetic cases

Significant charge transfer is also found in these quaternary compounds.

- Effecti ve charge of Mn is **not integer**
- **Mixed valence picture in doped manganites is questionable.**

↓ Questions about the mixed valence picture of Mn ions in hole-doped ${\rm LaMnO}_{_3}$

□ The Mn-O bond has a covalent part and is not 100% ionic. Mn and O ions don't have integral effective charges in manganites. \Box The mixed valence system has a larger electrostatic energy than the uniform valence system.

 \Box The on-site Coulomb potentials at Mn³⁺ and Mn⁴⁺ differ by about $\frac{e}{\varepsilon \cdot r} = \frac{14.4 \varepsilon \cdot r}{\varepsilon \cdot r(\text{\AA})}$. This chemical shift is absent in the Mn 3*d* $t_{\rm 2g}$ and *e* ^g features in Mn *K*-and *^L*3,2-edge x-ray absorption spectroscopy (XAS) spectra . [1,2] *eV re* $\frac{\ }{\varepsilon\, \cdot\, r}\,=\, \frac{\ }{\varepsilon\,} \, .$ ² 14.4 Å

[1] T. Saitoh et al., Phys. Rev. B51, 13942(1995). [2] M. Croft et al., Phys. Rev. B 48, 8726(1997).

\perp Comparison of the electrostatic energies

Assume **uniform** charge distribution,

Electrostatic energy :

The difference is larger for real charge distributions

Origin of the magnetism in $\rm La_{1-x}Sr_{x}MnO_3$ and $\rm La_{1-x}Ca_{x}TiO_3$

 Splitting of majorityand minority-spin sub-bands due to the exchange interaction.

 O-mediated super-exchange coupling between adjacent Mn spins favors **antiferromagnetism** . Mediation by itinerant or delocalized empty majority-

spin states in the vicinity of E F favors **ferromagnetism**.

O-mediated super-exchange coupling

- For the **perovskite** structure, two adjacent Mn spins are separated by the O ion.
- \sqcup -spin and -spin electrons in the O ion can shift in opposite directions to benefit from **attractive exchange couplings** with the two opposite spins in the two neighboring Mn ions.

Mediation by itinerant or delocalized empty majority-spin states in the vicinity of $\mathrm{E_{_{F}}}$

delocalized Mn majorityspin empty e_g sub-band

- \Box Parallel spins have attractive exchange energy.
	- The exchange energies between delocalized Mn majority-spin e e_g electrons and neighboring
localized Mn maiority-spin t. localized Mn majority-spin t_{2g} electron are attractive.

Q The deficiency of Mn majority-spin $e_{\rm g}$ states immediately above E_F , so that the O mediated super-exchange coupling dominates and the material is **antiferromagnetic**.

‡ PDOS's of ferromagnetic cases

+ PDOS's of antiferromagnetic cases

Implication to CMR

For doped manganites, there are three kinds of carriers: **(a)** delocalized O 2p electrons, **(b)** delocal ized Mn *e* ^g electrons and **(c)** localized Mn t2g electrons. **(a)** and **(b) contribute dominantly to** σ**.**

(1) Without a magnet ic field, ρ=1/σ can be due to transfer of **(a)&(b)-**carrier energies to **empty** Mn [↓]*t***2g** states **immediately above E F** through exchange interactions.

(2) Under a magnetic field strength of 6 Tesla:

 ΔE (spin-field)=3.5x10⁻⁴eV and ΔE (orbital-field)=m3.5x10⁻⁴eV (m=-2,-1,0,1,2) are **too small** to cause significant changes in **carrier densities** because **(a) and (b) sub-bands are not delta-function like.**

However, these ∆**E's can cause a large percentage of reduction of the** number of empty Mn t_{2g} states, which contribute to the absorption of $(a) \& (b)$ -carrier energies, due to the large slope of PDOS.

Note: ∆**E(absorbed) per unit volume=j ²**ρ, **where j is the current density.**

MR derivation is underway.

Electronic structures of wide-band-gap $\mathrm{(SiC)}_{1-x}\mathrm{(AlN)}_{x}$ semiconductors

Between SiCand AlN :

Small lattice mismatch & Large band gap difference $\overline{\mathsf{L}}$ Quaternary (SiC)_{1-x}(AlN)_x:

Potential materials for opto-electronic applications.

The wavelength of the light emitted can be tuned over a wide range.

MD method is first used to efficiently obtain the structural parameters, and then the **PSF method** is used to obtain electronic structures, in particular band gaps.

Structural models for $\mathrm{(SiC)}_{1\text{-x}}\mathrm{(AlN)}_{\mathrm{x}}$

- **The** $(SiC)_{1-x}(AlN)_{x}$ superlattice has been successfully fabricated on the 6H SiC(0001) substrate. [Roucka et al. PRL v.88 p.206102 (2002)]
- \Box x=0.00 (SiC) and 1.00 (AlN):

W urtzite primary unit cell with 4 atoms/cell

 \Box x=0.25, 0.50, and 0.75 :

(2 *^a*,*a*,*^c*) unit cell with 32 atoms/cell

Structural properties of $(SiC)_{1-x}(AlN)_x$

 \Box In the calculations of the electronic structures using the PSF method, the experimental lattice parameters of SiC and AlN are used, and the atomic positions are determined by prorating those optimized by MD calculations with experimental lattice parameters.

[1] F. Kootstra et al., Phys. Rev. B. **62**, 7071 (2000)

The band structures for $(SiC)_{1-x}(AlN)_x$

Conclusion

- \triangleq Electronic structures of titanates, manganites, and $(SiC)_{1-x}(AlN)_x$ quaternary compounds are more complicated than those would be predicted from constituent binary or ternary compounds.
- ↓ Subtle charge transfer is found for these three kinds of quaternary compounds due to differing electronegativities and electronic configurations of cations and the detailed balancing in the filling of various sub-bands.
- The variation of the electronic and magnetic properties of Sr and Ca doped manganites is found due to both dopant-induced delocalization of \sim -spin Mn $e_{\rm g}$ states and the lowering of the -spin Mn t_{2g} sub-band down to the Fermi-level.
- $(SiC)_{1-x}(AlN)_x$ is found to be important for optoelectronic applications.