奈米技術在Flash記憶體與 TFT平面顯示器之應用與研究

張鼎張

國立中山大學物理系國家奈米元件實驗室

奈米點(nano-dots)在半導體 記憶體之製作與研究

Outline

1. Ge nano-dots 在快閃記憶體之製作與研究

2. GeO2 nano-dots 在快閃記憶體之製作與研究

3. W nano-dots 在快閃記憶體之製作與研究

4. SONOS 非揮發性記憶體之製作與研究

DRAM Cell Structure

Refresh

- Junction leakage
- Pass transistor subthreshold leakage
- Leakage through capacitor dielectric
- Other parasitic leakage paths

DRAM

- Disadvantages
 - volatile
 - low speed
 - power consumption (replenishing)
- Advantages
 - high density
 - low cost

DRAM still have the highest volume of memory market !!

SRAM

SRAM

- Mainly used as Cache
- SRAM are a quarter the capacity of DRAMs fro the same process technology and chip size

Cost about four times as much per bit as a DRAM!

Commercially successful floatinggate (FG) nonvolatile memory device

A substantial progress of NVSM - portable electronic systems

- Cell phone
- Laptop
- Digital camera
- Smart IC card
- Mp3 player
- •

• All of the devices require low power loss and being nonvolatile.

Web-Feet Research Inc.

Applications (M units)	2003	2004	2005	2006	2007	2008	2009	2010
Cellular	447	522	631	695	737	787	852	906
Bluetooth	37	61	85	163	194	212	234	251
Digital Cameras	59	78	85	105	116	125	131	139
MP3 Music Players	13	24	44	74	105	147	197	251
USB Drives	33	56	100	149	189	242	338	408
GPS(Auto, Marine, Aviation	n) 55	71	86	98	120	139	161	186
End-Use Total (M units) 2200) 3131	3623	4091	4513	4930	5142	5568

Limitations of FG devices

- A compromise of 7-9 nm for tunnel oxide (low operating voltage v.s. high nonvolatility)
- One weak spot creates a fatal discharge path, compromising long term nonvolatility.
- Limitations for continued scaling.
- The FG structure is believed to run out of the steam beyond the 65-nm node.

Distributed Charge Storage

- More simplified fabrication process
- The potential to use thinner tunnel oxide without sacrificing nonvolatility.
- Immunity to SILC, better retention and endurance characteristics.
- Great potential in device performance

- To enable single-electron or few-electron memories by Coulomb blockade effect, smaller nanocrystals, ex. ~5 nm, are preferred.
- The Coulomb blockade effect of the nanocrystals makes the storage and operation of the memory device robust and fault-tolerant.

Experimental Results

The segregation of Ge element from the oxidation process of SiGe

Process flow of fabricating Ge dots embedded in SiO₂

Standard clean,	LPCVD	Wet oxidation
4.5-nm tunnel \longrightarrow oxide growth	$Si_{1-x}Ge_x \longrightarrow$ growth	and Ge nanocrystals precipitate

5-V operation:

threshold voltage shift 0.42V

$$\Delta V_{t} = \frac{t_{control}}{\varepsilon_{ox}} \cdot Q_{t}$$

$$\Delta V_{t} = 1.14V$$

$$t_{control} \approx 40nm$$

$$\varepsilon_{ox} = 3.9 \times 8.85 \times 10^{-14} F / cm$$

$$Q_{t} = 9.65 \times 10^{-8} C / cm^{2}$$

The C-V hysteresis was saturated at 10-V operation. The density of the Ge nanocrystal is electrically calculated to be around 6.2*10¹¹ cm⁻².

Fowler-Nordheim Tunneling

barrier height: φ_B Effective mass: $0.5m_e$

Fowler-Nordheim tunneling

$$J = \alpha E^2 \exp\left[\frac{-E_c}{E}\right]$$

$$\alpha = \frac{q^3}{8\pi h\phi_b} \frac{m}{m^*}$$

 M^* = the effective mass of an electron in the band gap of SiO₂. (0.42m)

$$E_c = 4\sqrt{2m^*} \frac{\phi_b^{3/2}}{3\hbar q}$$

$$\log\left(\frac{J}{E^2}\right) \propto (1/E)$$

Summary (1)

- Ge nanocrystal memory device with 4.5-nm tunnel oxide is demonstrated.
- A low operating voltage, 5V, is implemented and a significant threshold voltage shift (0.42V) is observed.
- The density of the Ge nanocrystals is about 6.2*10¹¹ cm⁻².
- The retention characteristics are tested to be robust.

Rapid oxidation of thin SiGe film down to 10 nm

Raman spectroscopy of the gate stack

Summary (2)

- Ge precipitation of the rapid oxidation of SiGe is observed in Raman spectroscopy.
- Via the suitable control of the rapid oxidation process, SiGe or Ge dots can be realized as expected.

A distributed charge storage of GeO₂ nano-dots (over oxidation of Ge nano-dots)
X-ray Absorption Near Edge Structure (XANES)

• In X-ray absorption near edge structure (XANES), a core electron is excited to higher bound or quasi-bound states, which contain information about coordination geometry and electronic aspects of the absorbing atom.

- Among most of the XANES study, the standard materials with known valence is utilized as references, and compared with unknown samples.
- The measurements are frequently qualitatively analyzed, not quantitatively.
- Nowadays, almost all experiments of X-ray absorption spectroscopy are using synchronizing radiation as light source.
- X-ray source: National Synchrotron Radiation Research Center.

The charge storage mechanism of GeO₂ nanodots embedded in SiO₂

Summary (3)

- XANES is a useful analysis tool for the microscopic structures of the nano-dots.
- Obvious charge trapping effects are observed in the GeO_2 nano-dots embedded in SiO_2 .
- It is deduced that the insulating GeO₂ can be utilized as a storage element acting as silicon nitride.

Semiconductor memory with tungsten (W) nanodot

The major advantages of metal nanodots over their semiconductor counterparts:

(1) stronger coupling with the conduction channel

(2) a wide range of available work functions

- To enable single-electron or few-electron memories by Coulomb blockade effect, smaller nanocrystals are preferred.
- However, for semiconductor nanocrystals, the band gap of the nanocrystals is widened in comparison with that of the bulk materials due to the multi-dimensional carrier confinement, which compromises the retention time.

- The work function of metal thin films does not deviate from their bulk value dramatically down to about 0.4 nm in thickness.
- We can exploit the Coulomb blockade effect better with metal nanocrystals to achieve ultra low-power memories without compromising the retention time from quantum mechanical confinement effects.

Process Flow of Fabricating W Nanodots

Parameters of the process

• Dry oxide 4.5 nm, 925 , APCVD.

• W silicide 8 nm, a-Si 10 nm, sputtering.

• Oxidation of the gate stack, 900

The nature of the oxidation of tungsten silicide

• For tungsten silicide films deposited on

 SiO_2 , in the initial stage of the oxidation, the

removal of Si from the silicide layer leads

directly to the formation of free W.

TEM micrograph of the W dots

The mean size and aerial density of the W nanocrystals are found to be 4.5 nm and 3.7×10¹¹/cm², respectively.

FTIR spectrum of the sample after hightemperature oxidation

Electron charging and discharging effects of tungsten (W) nanocrystals

The endurance characteristics of the W nanocrystal memory device

Summary (4)

- W nano-dots are fabricated based on the oxidation of tungsten silicide and the mean size and aerial density of the W nanocrystals are estimated to be 4.5 nm and 3.7×10¹¹/cm², respectively.
- Threshold voltage shift of 0.95 V under 3-V operation was observed by C-V hysteresis, which is, to our knowledge, the largest memory window in the study of low-power nanocrystal memory device.
- The endurance behavior of W nano-dots memory device is tested to be robust up to 10⁶ cycles.

The study on SONOS nonvolatile memory technology

ONO gate stack for SONOS technology

Al-gate

Silicon Nitride LPCVD System

Exhaust

High Density Plasma CVD

Summary (5)

- HDPCVD SiN_x ONO stack, with a low leakage current, provides a larger memory window than the LPCVD Si_3N_4 ONO stack.
- With the optimization of the thickness in the gate-stacked ONO structure, the lowvoltage and reliable operation, lower than 5V, is realizable.

Quasi-Superlattice Storage (QS²): a novel concept of multilevel charge storage

Process Flow

Standard clean \rightarrow 3nm tunnel oxide growth \rightarrow 2nm Si₃N₄ \rightarrow deposition 2nm a-Si deposition \rightarrow 2nm Si₃N₄ \rightarrow 2nm a-Si deposition \rightarrow deposition \rightarrow 2nm a-Si

 10nm TEOS
 --- Steam
 Backside

 oxide deposition
 --- 982 for 180 sec
 etching

Electrode patterned, _____ Electrical measurement

- The two sudden rises of the threshold voltage shift innovate the feasibility of 2-bit-per-cell operation under different operating voltages.
- For instance, memory state 1 can be defined at 6V and memory state 2 can be defined at 10 V.

- The current-voltage characteristics behave like that of the resonant tunneling diode. The resonant tunneling is occurred at around 2V, 5.2V, 7V, and etc.
- Consider the resonant tunneling between the a-Si and nitride layers.

At V=0, the ideal energy band diagram

Retention and endurance characteristics of the quasi-superlattice memory device

Summary (6)

- The quasi-superlattice structure provides the possibility and viability of 2-bit-per-cell operation.
- A physical model is proposed to explain the multilevel charge storage of the QS structure.
- The negative differential resistance occurs at low temperature in a manner of resonant-tunneling-diode-like (RTD-like) leakage behavior.

Conclusion

- To stimulate the nonvolatile memory devices move into a faster and smaller regime, the tunnel oxide thickness needs to be shrunk.
 - Optimization of ONO stack and new storage materials are widely pursued in SONOS nonvolatile memory technology.

Conclusion (cont.)

- The uniformity of the nanocrystals, size and size distribution, determines the key to the mass production of nanocrystal nonvolatile memory devices.
- The advanced nonvolatile memory devices with tunnel oxide less than 7 nm deserve more attention on the study of retention, endurance, disturb, retention after stress, and etc.

- **T. C. Chang et al.**, Electrochemical and Solid-State Letters, **7**(1), p. G17 (2004)
- T. C. Chang et al., Applied Physics Letter, 84(12), p.2094 (2004).
- T. C. Chang et al., Applied Physics Letter, 84(14), p.2581 (2004).
- T. C. Chang et al., Applied Physics Letter, 84(18), p.3687 (2004).
- **T. C. Chang et al.**, Applied Physics Letter, **85**(2), p.248 (2004).

奈米線薄膜電晶體(nano wire -TFT) 在平面顯示器之應用與研究

"High performance polycrystalline silicon thin film transistor with multiple nano-wire channels and LDD structure" *Applied Physics Letter*, 84(19), p.3822 (2004)

内建無線數據機的手機,可提供高速數據128000位元/秒 傳輸:使用手機通話的同時,可以看到對方的臉,所有的動 作表情盡收眼底。 • 液晶特性

同時具有晶體規則性與液體流動性的液晶會因溫度的增加 或下降變化,而造成液晶狀態的改變。

(a) 未加電壓時

(b)加電壓時

扭轉向列型液晶顯示器之工作原理;利用外加電壓來改變液晶分子排列狀態,進而達到亮暗對比的顯示效果。

液晶顯示器的被動與主動矩陣驅動技術:利用掃描電極與資料電極的安排來達到點矩陣的驅動 形式,而主動驅動液晶顯示器是運用主動元件(如電晶體)來控制各畫素的開關。

TFT-LCD Operating Principle

TFT-LCD Signal Driving

薄膜電晶體液晶顯示器的結構示意圖,在兩片玻璃基板間夾有一定 排列方向的液晶分子層,利用間隙子控制液晶盒的均匀厚度。

Silicon Thin Films -- Classification

it plications) structures	a-Si amorphous	poly-Si poly-crystal	c-Si single crystal
Field Effect Mobility µ (cm²/Vs)	0.5 - 1.0	30 - 300	600 - 700
Crystal Structure	$\begin{array}{c} H \rightarrow & H \rightarrow &$	Grain boundary	0-0-0-0-0-0-0 0-0-0-0-0-0 0-0-0-0-0-0 0-0-0-0-0-0-0 0-0-0-0-0-0-0 Perfect
Application	Pixel Switching	Driver Circuit	Driver LSI

• Silicon thin film

Aperture Ratio in a-Si and p-Si TFTs

Reliability in a-Si and p-Si TFTs

Advantages of Poly-Si TFT Technology

• Higher pixel aperture ratio

 \rightarrow higher brightness, or lower power displays

- Higher resolution
 - not limited by TAB-IC connection pitch
- More compact and reliable display module
 - ~95% fewer external connections ("3 sides free")
 - reduced number of electronic components

TFT Technology Comparison

AMORPHOUS SILICON

- Iow carrier mobility (µ_n<1 cm²/V•s)
 → separate IC drivers needed (TAB-IC pitch limited to ~150 ppi)
- low-temperature (<350°C) process
 → low-cost glass substrates

POLYCRYSTALLINE SILICON

- higher mobilities ($\mu_n, \mu_p > 30 \text{ cm}^2/\text{V} \cdot \text{s}$) \rightarrow smaller pixel TFTs
 - \rightarrow integration of driver circuitry
- high-temperature (>450°C) process
 - → high-strain-point glass or quartz substrates

LTPS TFT-LCDs

LTPS display with integrated driver

System on panel

• Advantage of using poly-Si TFTs

- 1. Larger aperture ratio
- 2. Higher circuit density
- 3. Larger driving current
- 4. Apply to AMOLED
- 5. Realization of System on Panel

Driving current

$$V_D \propto \mu \frac{W}{L}$$

- As the channel scaling
- 1. Leakage current
- 2. Drain induced barrier lowering (DIBL)

3. Kink effect

2. Device fabrication

Fabrication steps

- 1. Buried oxide (400nm) grown
- 2. 50nm a-Si thin film deposition.
- 3. SPC crystallization 600°c 24hr
- 4. Active region definition
- 5. Gate definition.
- 6. N- (5E13)and N+(5E15) implantation & RTA
- 7. Contact hole and metallization
- 8. NH3 plasma passivation.

• 3-dimensional schematic plot of purposed conventional single channel TFT. • 3-dimensional schematic plot of purposed multiple nano-wire channels TFT.

• AA' Cross-section plot of purposed TFT.

High performance Polycrystalline Silicon TFT with Multiple Nano-Wire Channels

SEM of active pattern with source, drain and multiple nano-wire channels. The each nano-wire width is 67 nm

Id-Vg transfer characteristics of multiple nano-wire channels $(L/W = 0.5 \text{um}/67 \text{nm} \times 10)$ and single channel (L/W = 0.5 um/1 um)

"High performance polycrystalline silicon thin film transistor with multiple nano-wire channels and LDD structure" *Applied Physics Letter*, 84(19), p.3822 (2004)

Thank you!